ANIMAL EXPERIMENTS FOR DRUG DEVELOPMENT

Dr C. Nath, MD FAMS
Chief Scientist, Div of Toxicology
CSIR-Central Drug Research Institute, Lucknow

Stages of Drug development

- Pharmacological Efficacy
- DMPK studies
- Safety Evaluation

✓ Animal use are essentially required

PHARMACOLOGICAL EFFICACY

Animal models to demonstrate: Specific Pharmacological action of a test substance and its therapeutic potential for humans.

Efficacy - Effective dose (ED50) & comparison with standard drug (if possible)

Probable mechanism (if possible)

The use of new technologies and methodologies in accordance with sound scientific principles should be preferred.

- Animal models are selected on the basis of validity
- •Validity usefulness of an animal model for a given purpose
- •PREDICTIVE VALIDITY:

Capability of a model to identify a property of test substance

ANIMAL MODELS USED AT CSIR-CDRI

- CNS & CVS DISORDERS: Neurobehavioural Diseases, Stroke, Hypertension – Thrombosis, Atherosclerosis
- > METABOLIC DISORDERS: Diabetes, Dyslipidemea, Osteoporosis
- Reproductive System: Fertility Contraception
- > Infectious Diseases: Malaria, Filaria, Leishmaniasis, Tuberculosis

Screening programme:

- In vitro to identify active molecule
- In vivo to establish efficacy
- ED 50 and comparative evaluation with standard drug to determine therapeutic potential

Development phase:

Preclinical Drug Metabolism and Pharmacokinetics (DMPK) Studies of a candidate drug

DMPK is a major contributor to high rate of attrition, hence desirable DMPK is essential for clinical success of a candidate drug

Analytical & Bionalytical Assay Methods

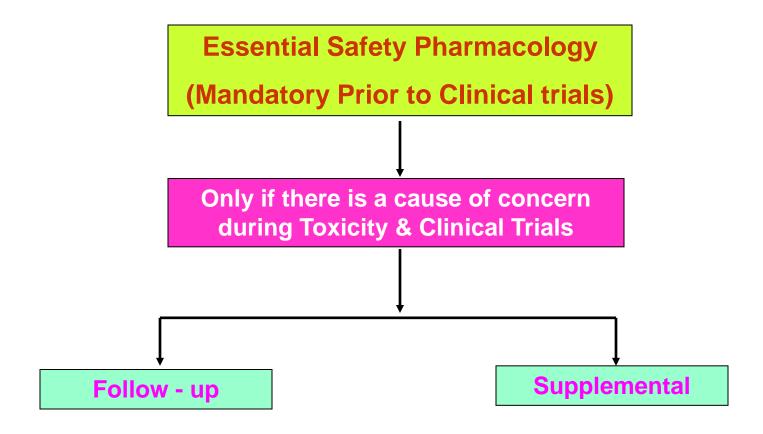
In-vitro Parameters:

- GI Stability
- ➤ In-situ Permeability
- Plasma Protein Binding
- In-vitro Metabolic Stability(Rat S-9 / Microsomal Study)
- > CYP 450 Reaction Phenotyping
- Metabolite Profiling

In-vivo Parameters:

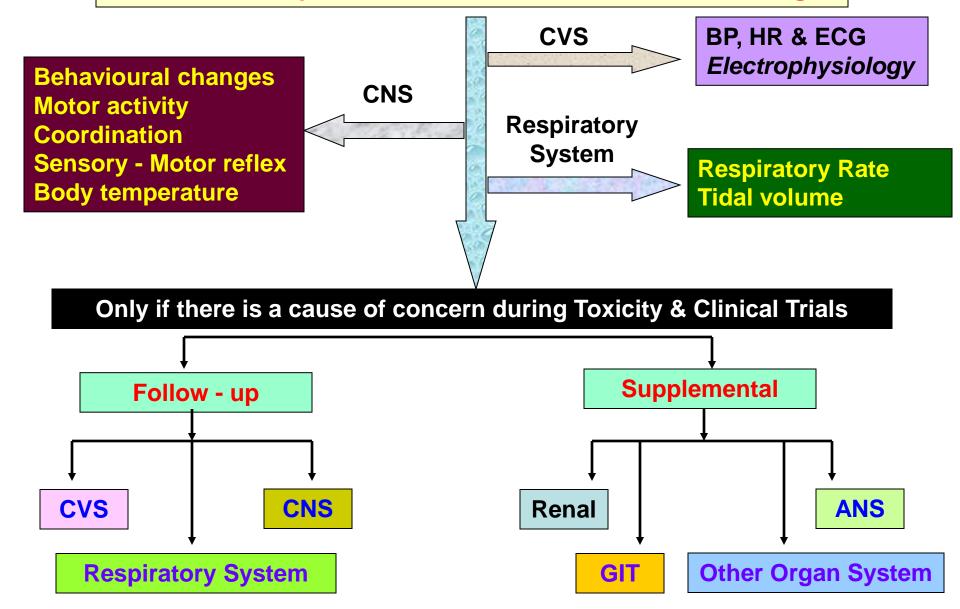
- Oral and i.v. pharmacokinetics
- > Tissue distribution
- Metabolism
- Excretion studies (Feces, Urine, Bile)
- > Toxicokinetics

BIOAVAILIBILITY, HALF-LIFE, ACTIVE METABOLITE & TISSUE ACCUMULATION are important for Human use


Safety Pharmacology Studies

- ❖ Safety pharmacology studies are conducted to investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure within the therapeutic range and above.
- These studies should be designed to identify undesirable pharmacodynamic properties of a substance that may have relevance to

√ Human safety;


- ✓ Evaluation of adverse pharmacodynamic and/or pathophysiological effects observed in toxicology and/or clinical studies; and
- ✓ Investigation of the mechanism of the adverse pharmacodynamic effects observed and/or suspected.

SAFETY PHARMACOLOGY STUDIES SCHEDULE Y-APPENDIX IV (Jan 2005)

Essential Safety Pharmacology

To assess the potential adverse effects of a candidate drug

Animal Toxicity Studies (Schedule Y Appendix III)

Objective: To Explore Toxic effects of a candidate drug

Systemic Toxicity Studies

Single Dose (Rodent)

Dose ranging (DRF) (Rodent)

Repeated Dose (Rodent & Non-rodents)

Parameters:

- General Behavior
- Organ Pathology: Gross &

Microscopic

- Hematology
- Biochemistry (Blood)
- Urine analysis

Special Toxicity Studies

Reproductive Toxicity
 (Male Fertility, Female Reproduction & Development: Fertility,

Teratogenecity & perinatal)

> Genotoxicity

(Gene mutation (Ames), Ch damage: Aberration Test & Micornucleus test)

- Carcinogenicity
- Immunotoxicity

Toxicity Studies Require to obtain permission for Phase I Clinical trial Systemic Toxicity Study: Single, DRF & Repeated Dose

Duration of toxicity study	14 days	28 days	90 days	180 days
Duration in human	up to 1 week	>1 to 2 week	>2 to 4 week	>4 week
Speicies (n /sex/gp)	Rodent – Rat, (6-10) Non rodent- Rh Monkey / Dogs (2-3)	Rodent – Rat, (6-10) Non rodent- Rh Monkey / Dogs (2-3)	Rodent – Rat, (15-30) Non rodent- Rh Monkey / Dogs (4-6)	Rodent – Rat, (15-30) Non rodent- Rh Monkey / Dogs (4-6)

Special Toxicity Studies: Reproductive Toxicity: Male Fertility Study

Genotoxicity: Ames test for mutation

FIRST HUMAN DOSE CALCULATION

Important Determinants

- ED 50 (Efficacy Pharmacology)
- NOAEL (Systemic Toxicology)

Thanks